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EXECUTIVE SUMMARY

A linear second-order system was implemented in the simulation in a pre-
liminary attempt to model the physical actuator's dynamics. The second-order
system with non-linearities added was tried next. However, we presently have
no data on the actual performance of the actuator and therefore cannot assess
the validity of our models. The integration scheme gave very good accuracy
and overall performance when a step size of 0.001 seconds was chosen.
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I. INTRODUCTION

Missile simulation is an indispensable tool with which the engineer's

computer can emulate the behavior of an actual missile in flight. Because a

simulation is usually not an exact reproduction of a physical system, the engi-

neer must make certain assumptions or approximations as to how a physical sys-

tem should be mathematically represented in a computer program. The results

of the simulation should allow the engineer to verify the performance of the
system and to validate his/her assumptions.

The most straightforward method of tackling a missile system simulation
would be to divide the system into discrete sections and construct subrou-

tines that would accurately model their tangible equivalent. The subroutines

that will be addressed in this report are the fin actuators and the numerical

integration scheme.

II. FIN ACTUATOR MODELS

Two types of fin actuator models that we will be discussing are a linear

second-order model and a non-linear second-order model.

A. Linear Model

A simple model that could describe an actuator's dynamics is a

linear second-order system with damping zeta (ý) and natural frequency omega
(wn). Such a system exemplifies unity gain out to w, peaking of gain at wn

inversely proportional to damping, a -20dB per decade slope in gain after wn,

and a 1800 change in phase. Step response characteristics such as rise

time and overshoot are a function of bandwidth (wn) and damping.

The transfer function of a second-order system is given below, where

6 is the output and 6r is the input. Figure I shows one of many possible

methods of implementing the transfer function as a block diagram.

G ( s ) 6 S- -
n _2

dc S 2 +2ns + wn2

.n -ID EF200T S D EF

DEFDOT

Figure 1. Second-order block diagram.



The differential equation describing the system's dynamics is:

n ~2 ( k - 6 *±I

The differential equation when encoded in FORTRAN becomes:

DEFDD - (OMEGA**2)*(DEFC-DEF-(DEFD*2*ZETA/OMEGA))

The system's state equations are as follows:

64 1 [:J0x2 .n2 - ., x2 2n

L.

Where 6 (xj) is the fin position, 6 (x2) is the fin velocity, and

6(i 2 ) is the fin acceleration.

1. Analytical Solution

Since there will be differences between the solutions to the dif-
ferential equations for the actual and simulated systems, we will develop an
analytical solution for comparison. The input (6c) will be a unit step.

6c(t) = 1

6c(S) =

from the transfer function:

•n 2

6(S) - G(S) 6c(S) S(S + 2
tn S + n2)

6(t) = L-1 [6(S)] ..

From a table of Laplace transform pairs, we find the solution to
6( t):

6(t) - - ent sin(ujjVT7_C + Cos-1] ~2

~(t) 1 - e ;2 -++ Cos-

2



For a solution to the first integral, 6(t):

6(t) - L-I[s6(S) - 6(0+)]

assume 6(0+) = 0.
n2

S6(S) S2 + 2 ns + 2

From the Laplace transform pairs table:

6(t) 2[(~17e~1 sin(wn V(FC2t)]

ýW we_-unt sin(wan•--•C t)

ý •1
Using an u• of 144 rads/sec, and a C of 0.6, as an example we

get:
-86. 4t

6(t) - 1-1.25 e sin(115.2t + 0.9273) rad
-86.4t

6(t) - 180 e sin(115.2t) rad/sec

2. Simulation Results

0,,tput data from the 34mulation were tabulated and plotted to
produce the graphs shown in Figures 2, 3, and 4. Figure 2 shows fin position
(angle) versus time. Figure 3 is a plot of fin velocity versus time and Fig-
ure 4 shows fin acceleration versus Lime. These outputs are in response to a
step input. Comparison of analytical and simulated solutions are given in
Section III. The FORTRAN code for this program and a short discussion are
given in the Appendix.

B. Non-Linear Model

A second type of model is one that contains physical limitations,
which were added to the linear second-order model to yield a second-order non-
linear model.

1. Development

The second-order linear model was modified to include character-
istics typical of an actuator motor. This resultant non-linear model more
closely emulates the real thing. These characteristics are inherent limita-
tions of the physical system and are non-linear. They include; position
limits (fin stops), velocity limits (slew rate limits), acceleration limits
(finite torque), a deadband in the rate feedback (hysteresis), and aerodynamic
hinge moments. Figure 5 shows a block diagram with the note describing the
differential equation.
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ACCEL F •RATE POSITIONI

6c ACC'Rý LI14IT LIMIT 6L6 LIMIT ,6

n + _n

I-i DEF

DEADBAND
RATEFB _________________

Figure 5. Second order non-linear block diagram.

NOTE: Descriptive differential equation is:

SWn2 (6c - 6LIM - RATEFB - •6 -) - I4
wn

The describing differential equation that appears in the simula-
tion code is:

DEFDD = (OMEGA**2)*(DEFC - DEF - RATEFB - (DEFD*2.*ZETA/OMEGA)) - -IN

where: DEF 6 = fin position

DEFD = - = fin velocity

DEFDD = - fin acceleration

HM - hinge moment

RATEFB = rate feedback

OMEGA bandwidth (un)

ZETA - damping factor.

As can be seen from the block diagram, no trivial analytical
solution for the differential equation exists, so we must rely on a numeri-
cally integrated solution.

7



2. Simulation results

The fin angle, velocity, and acceleration versus time for the
non-linear second-order model were plotted and appear in Figures 6, 7, and 8.
The hinge moment for these plots was set to zero.

Compared to the linear model, the position rise time is
lengthened due to the rate and acceleration limits of 5.25 rads/sec aad 300
rads/sec 2 , respectively. The overshoot is less due to the position limit of
0.436 rads. Plots for the negative fin deflection were not given since the
results were a mirror image of the positive deflection.

Various hinge moment constants were added and the results are
shown in Figures 9 through 12. The hinge moment in Figure 9 is an aiding
moment: Note the increased overshoot and faster rise time. The hinge moments
in Figures 10 through 12 are hindering moments: Note that some of the plots
show that the commanded fin deflections were not achieved and in Figure 12 a
limit cycle resulted. The complete FORTRAN code for this non-linear model is
included in the Appendix.
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III. NUMERICAL INTEGRATION

A method of solving differential equations in a computer program is to
find the solutions by numerical integration. This process usually involves
iterative mathematical calculations.

A. Development

Solutions to mathematically modeled systems with transient or time-
dependant processes usually involves solving differential equations. Some
differential equations can be solved analytically, however most cannot, par-
ticularly if non-linear elements are present. Therefore, in computer
programs, numerical integration methods can be used to solve differential
equations with acceptable accuracy.

One numerical integration method commonly used is the Runge-Kutta
fourth-order method (R-K 4). There are many good texts available that inves-
tigate and develop this method in detail, however, only a general overview
will be given here.

The R-K 4 scheme uses a weighted average of four estimates to calcu-
late an approximation to the solution. A simple form of a first order differ-
ential equation is:

dxd-x f(x,t)

where f(x,t) is a known function. Substituting values xn and tn into the
equation we get the slope of the solution curve at a known starting point, tn.

The R-K 4 approach is to find an approxim~te slope at a known
starting (xn,tn) and use this slooe and a small time increment to proceed to
the next point. Then assuming that this new point is a known point on the
solution line, again find an approximate slope at this new point and proceed
to the next point by incrementing the time step. The equations are:

kI = f(tn,xn)
h klh

k2 = f(tn + !, xn +--h)

f~n+h k2 h

k3 - f(tn + 1, xn + -7--)

k4 - f(tn + h, xn + k3 h)

h
xn+l - xn + 11 (kI + 2k 2 + 2k 3 + k4 )

where: h is the time increment
tn is the initial time
xn is the initial solution point.

16



B. Accuracy

The accuracy of the solution is a function of the time step, h. A

smaller time step results in better accuracy but the program run times are
increased compared to a larger time step. Too small a time step can cause
round-off or truncation errors due to the increased number of calculations.
There is an optimum range, for each application, of time step values for the

integration scheme.

i. Analytical Solutions

To check the accuracy of the integration scheme as a function of
time step, the analytical solution to a second-order linear differential
equation was compared to a R-K 4 solution. The linear second-order actuator
model developed earlier will be used as an example. Various time steps were
used and the resultant average and maximum percent :crors were tabulated and
plotted. The fin position and velocity (6 and 6) were evaluated using the
differential equations and analytical solutions presented earlier. The simu-
lation was performed using a Zenith personal computer with an 80286 central
processor and an 80287 numeric data processor, with all calculations done in
double precision. The describing differential equation given earlier is:

= - a2'_ - 6wn 2 - wn

with a unit step input (6c(t) - 1) •

This equation will be presented to the R-K 4 integrator to
arrive at a solution of the first integral, velocity 5. The analytical solu-
tion is:

-86.4t
6(t) 180e sin(115.2t) rad/sec •

The first integral, 6, will again be presented to the R-K 4 integrator to

calculate the second integral 6, position (fin angle). The analytical solution
is:

6(t) - 1-1.25e-86.4t sin(Il5.2t + 0.9273) rad

2. Simulation Results

The analytical solutions and the R-K 4 approximations for both
position and velocity were put on the same plot and are shown in Figures 13
and 14. Note the visible errors in the two plots.

The time step for these plots was coarse, 0.01 secs, and took a

few seconds to complete. The percent errors at each time interval were
averaged and are given for position and velocity as well as the maximum per-
cent errors (see Table I).

17
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TABLE 1. Table of Average and Maximum Percent Errors,
h - 0.01 secs

Average Maximum
Percent Percent

Position, 6 0.0511 3.96

Velocity, 5 69.6 4000

Next, a smaller time step of 0.001 seconds was used. The errors
are given in Table 2 and the results are plotted in Figures 15 and 16. Note
that there are no visible differences in the analytical and numerically inte-
grated solutions.

TABLE 2. Table of Average and Maximum Percent Errors,
h - 0.001 secs

Average Maximum
Percent Percent

Position, 6 3.2xi0-5  4.7xi0-3

Velocity, 8 1.9xlO-3 0.21

A time step of 0.0001 seconds was used and the plots are not
shown because the errors were not visible, however the errors are listed in
Table 3.

TABLE 3. Table of Average and Maximum Percent Errors,
h - 0.0001 secs.

Average Maximum
Percent Percent

Position, 6 2.4xi0- 4  5.7xi0-3

Velocity, 8 2.7x10-7  5.9x10- 5

Using a stop time of 0.1 seconds and a resolution of 0.0005
seconds, the average percent errors for the first and second integrals were
plotted as a function of step size in Figures 17 and 18. The maximum percent
errors versus step size were plotted in Figures 19 and 20. Note that ini-
tially, a large step size results in poor accuracy. Smaller step sizes give
better accuracy, as would be expected, but too small a step size causes the
errors to increase. An optimum step size can be chosen from these graphs or
from similar graphs from other applications.

The simulation was run on a VAX 11/780 to investigate possible
wordlength effects on the results; however, the precision for the two machines
are the same and similar results were obtained.
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AUG /ERROR US STEP SIZE) UELOCITY
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Figure 17. Plot of average percent error vs.
time step for first integral.
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Figure 18. Plot of average percent error vs.
time step, 2nd integral.
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Figure 19. Plot of maximum percent error vs.
time step, 1st integral.
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Figure 20. Plot of maximum percent error vs.
time step, 2nd integral.
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IV. CONCLUSION

The non-linear second-order system more closely modeled the actuator's
dynamics and physical characteristics than did the linear system. However, at
present we do not have available test data on an actuator's performance and
therefore cannot assess the validity of our model. The Runge-Kutta integra-
tion scheme gave good accuracy and was deemed dependable. An optimum step
size of 0.001 second was chosen from the percent error plots.
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APPENDIX

The two versions of the programs for the fin actuator simulation will be
given here and the subroutines of interest will be discussed. The linear and
non-linear programs are nearly identical except for the subroutine called
"ACTUAT", and the analytical solutions in the main program of the linear ver-
sion. In both versions, two fins of opposite commanded deflections are simu-
lated, but only the results of the positive fin deflection are given since the
negative fin deflection gives a mirror image response.

Linear Model

In the linear second-order model, the subroutine "ACTUAT" contains the
differential equation that describes the system's dynamics:

DEFDD(I)-(OMEGA**2.DO)*(DEFC(I)-DEF(1)-(2.DO*ZETA*DEFD(I)/OMEGA))

This equation comes from the differential equation developed earlier.
The velocity state (DEFD) is equated to the variable X2 for integration
purposes.

The subroutine "ACTINT" initializes the actuator states and describes to
the integration scheme which variables are integrals and integrands.

Subroutine "DESOLV" is the Runge-Kutta integration scheme. Variables
stored in the array called "IXDOT" are the variables to be integrated. The
corresponding location in array "IX" contains the integrated value. In order
to perform integrations of orders higher than i, the result of the first in-
tegration is stored as a separate variable name, and this name is submitted to
DESOLV for integration. This continues until the proper number of integra-
tions have been performed. This is the reason behind the line of code:
DEFD(I) = X2(I). First, DEFDD (acceleration) is integrated and its integral
is called "X2". DEFD (velocity) is assigned to the value of X2 and DEFD is
integrated to get DEF (position).

Program "DIGSIM" is the calling program and contains the analytical solu-
tions and calculates the errors used in plotting. "C" arrays are used
throughout for communication between the various subroutines.

Non-linear Model

The subroutine "ACTUAT" in this version has been modified to include the
non-linearities discussed earlier. If the absolute value of the fin velocity
is less than 1.6 rads/sec, then the rate feedback is zero. Otherwise it is
(5 ± 1.6). This is in addition to the velocity state feedback.

20

The maximum acceleration allowed is 300 rads/sec 2 . The velocity is
limited by driving the acceleration to zero as the velocity approaches the
slew rate limit of 5.25 rads/sec. The aerodynamic hinge momenL is a function
of the fin deflection and a hinge moment constant, kHm.
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The pvAition iiLUiLer sets the velocity and acceleration states to zero
and the position state to 0.436 rads if the fin is accelerating past the fin
stop.

Note the commanded fin deflection is 0.3 rads. Compared to a unit step
(1) command input in the linear model.

The rest of the program for the non-linear model is identical to the
linear program, with the exception of the analytical solutions, and are not
given.

A-2



LINEAR MODEL

C
SUBROUTINE ACTUAT
IMPLICIT REAL*8 (A-H,O-Z)
COMMON C (2000))
DIMENSION DEF(2),DEFD(2-),DEFC(2--),X2-(2-),DEFDD(2-)
EQUIVALENCE (C( 400) ,))DEF(1)),(C( 401) ,DEF(2)),

(C( 402) ,DEFD(l) ) ,(C( 403) 1,DEFD(2) ),
(C( 404) ,DEFDD(l)),(C(4o5) ,DEFDD(2-)),
(C( 40'6),X42(1)), (C( 40'7/),X-2(2) ) ,(C( 1) ,TIME)

DATA OMEGA 144.00 /
DATA ZETA /.6D0'/
DEPC(l) = 1.00
DEFC(2) =-1.00'

C ** ONLY TWO FINS ARE SIMULATED *

00 201 = 1 2
C *STDEFOD TO X2- FOR INTEGRATION*

DEFD(I) = X2(I)
C *ACTUATOR DYNAMICS EQUATION*

DEFDD(I) = (OMEGA**2. DO) *(DEFC (1)-DEP (1) - (21. -* ZETA *DEFT)(I)/ flEMCA~))
TO CON rI NUE

RE TURN
END

C
C TH IS SUBROUTINE INITIALIZES THE ACTUATOR STATES ~
C ** ND SETS THE INDEXES FOR THE INTEGRATION SCHEME *

C
SUBROUTINE ACTINT
IMPLICTT REAL*8 (A-H,O-Z)
COMMON C (00
COMMON/DEINDX/NDES, IX (loo) , IXDOT(100)Ci
DIMENSION DEF(2),DEFD(') , DEFDD (2) ,X2 (2) , 2 .ADC (2) AD (2

ADDC(2), ADDF(2)
EQUIVALENCE (C( 400) ),DEF(l) ) (C( 401) ,DEF(2),

(C( 402-) ,DEFD(1) ) ,(C( w' .93) , DEF[D>.2-)),
(C( 40"4) ,DEFDD(l)),(C(4()5) ,DEFDI(-2)),
(C ( 406) , 2 (1)) ,(C 407) , X22(2)

IX(NDES+1) = 406
I X(rJDES+2) = 40'7
1IX (PIPES +3) = 400
IX(rlrES4-4) =4-1
IXDOT(?NDES*1) = 404

IXEDOT(NDES+-e-) =405
r xDo r(NDES+:7) = 40-2
IXDCTNDES+4) = 40ý-
NOES = NDES + 4
DEF (1) = 0.
DEF(2') = 0).
DEFD(l) = o.

DEFD (') = 0.
DEFDD(l) = 0.
DEFDD (2) = 0.
X-2(1) =0.

X--(2)=.
RETURN
END

A-3



C
C MA ~1IN PROGRAM *

C
PROGRAMI DISSIM
IMPLICIT REAL*8 CA-H,O-Z)
COMMON C (2000C)
COMMON/DEINDX/NDES,1XU00 (),IXDOTlIOO
COMMON/FREO/ Ni
LOGICAL LC(44C)O-)' ,QUIT,DATA
INTEGER IC (4C)('X)(-
DIMENSION DEF(-2),DEFD(-2)

EQUIVALENCE (C(l),LC(l))
EQ~UIVALENCE (C( 1),TpIE ),(C( 24),TSTOF),(IC(120),NTIME )

(LC(20C46) ,QUIT) ,(C(19 ,DT) ,(C(403) ,Y1 , (C(4r:)9),YIO),
(C( 410'),DIFFR),(C( 411),DIFFRD),(C( 4c)(:).DE.(i)).

TSTOF'ý I00.
1 CONT INIJE
OUIT=. FALSE.
CALL INPUT(DATA)
IF(.NOT.DATA) GO TO 3,

C--INITIALI ZATION
TIME = 0
NDES=0
NTIME = o

y t =().

Y I D=.

DI FSI.'M=o-.
D IFDSUM=o'.
CALL ACTINT
CALL ACTtJAT
CALL OUTPUT

C----MAIN LOOP
2 CONTINUE
CALL DESOLV

C ** ANALYTICAL SOLUTION FOR COMPARISON TO NUMERICAL ONE *

Y 1=1. 000-l-1. 5D0*DEXP (-836. 40C*TIME) *DSIN( 115. 27D0*TIME+.9-272_,95D(-.))
YID=18u-..ODC,*DEXP(-186.4c,)D(')*TIME) *DSIN(i15.20oDo*TIME)

C ** DIFFERENCES IN THE ANALYTICAL AND NUMERICAL SOLUTIONS *

DIFFRD= (DEF (1) -Y1D) /YID
COUNT=COUNT+I.
DIFSUM =DIFSUM+DIFFR
0 IFDSUM=DIFDSUM+DIFFRD
DIFAVG =DIFSUM/COUNT
D IFDAVG=D IFDSUM/COUNT
CALL OUTPUT
CALL TERM
IF(.NOT. QUIT) GO TO 2

C --- POST PROCESSING
CALL FOSTI
CALL OUTPTM
GO TO I

3 CONTINUE
CALL FOST21
END
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C
C **IF THE SIMULATION IS OVER *

C
SUBROUTINE TERM
IMPLICIT REAL*8 (A-H,O--Z)
COMMON C (-20(l)Co
EQUIVgILENCE (C(1),LC(1))
LOGICAL LC(400(')o) QcUIT
EQUIVALENCE (C( 1),TIME ),(C( -24),TSTOF' ),(LC(20('46),CUIT)

C
IF (TIME. GE. TSTOP) THEN

PRINT *,'SIMIULATION ABORT, TIME LIMIT EXCEEDED: TIME =',TIME

QUIT = .TRUE.
ENDI F
RETURN
END

C
BLOCi:K DATA SIMSUBS
IMPLICIT REAL*8 (A-H,O--Z)
COMMON C (20010)
EQUIVALENCE (C( 19),DT ),(C( 17t'))HD'T ),(C( 24),TSTOF )

(C( 27) , TPRSF ) ,(C( 40) ,DTFRNT) , (C ( 114) , TF'RNTO-))
(C( 116) .DTFPLT ),.(C( t15) ,TFLTO . (C( 711) .TFLTSPfl
(C( 418),ACTLIM)

DATA TSTOF / 500. /
DATA TPFRNTO , TPLTO / -2*0
D)ArA TP-R:SPTFLTSF. / 2 * 11:.
DATA DTFRNT.DTF'LT / 2* 1.0( /
DATA D T / 00t D() /
DATA HOT / .0)(:)('5D(-. /
END

C
C **RUNGE K"UTTA INTEGRATION SCHEME *

C
SUBROUTINE DESOLV
IMPLICIT REAL*8 (A-H,O-Z)
COMMON C (2100)
C-OMMON/DEINDX/NDES,IX(1c')m ),IXDOT(100)(j
EQUIVALENCE (C(l),IC(1))

INTEGER IC(4'0J)~
DIMENSION XSAVE(100)
EQUIVALENCE (C( 1),TIME ),(C( 19),DT ),CIC(120),tNTIME )

(C ( 170) , HDT
DATA R6, /.166~666e666666666e,6667Do
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* FOURTH ORDER RUNGA--KUTTA METHOD *

C REVISED VERSION
DO 1 It = 1,NDES
J = IX(If)
XSOVF ( 1) = C (J)

I CONTINUE
DO 2. 12 = 1,NDES
K =XDOT(12)
K1(I2) = DT*C(K)

2 CONTINUE
NTIME = NTIME + 1
TIME NTIME*HDT
DO 1- = 1,NDES
J IX(13)
C(J) = XSAVE(IZ) + KI(13)/2.DO

SCONTINUE
CALL ACTUAT
DO 4 14 = 1,NDES
J = IX(14)
K = IXDOT(14)

K2(14) = DT*C(K)
C(J) = XSAVE(I4) + K2(14)/2.DO

4 CONTINUE
CALL ACTUAT
DO 5 I5 = I,NDES
P = IXDOT(I5)

K3(I5) = DT*C(K)
5 CONTINUE

NTIME = NTIME + I
TIME NTIME*HDT

DO 6 16 = 1,NDES
J = IX T6)
C(J) = XSAVE(I6) + K3(16)

6 CONTINUE
CALL ACTUAT
DO 7 17 = 1,NDES
J = IX(17)
K = IXDOT(17)

f::+4(17) = DT*C({.<)
C(J) = XSAVE(17)+(I : (17)+2.DO*(:3(17)+K3(I7))+ K.4(17))/6.D(')

7 CONTINUE

CALL ACTUAT
RET URN
END
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* OUTPUT STORES OUTPUT DATA IN THE VARIOUS OUTPUT FILES

SUBROUTINE OUTPUT
IMPLICIT REAL*8 (A-H,O--Z)
REAL*4 PC(50)
INTEGER IC (4000)o
COMMON C (2000)
EQUIVALENCE (C(1),IC(1))
CHARACTER NAMES*1-2
COMMON/OUTPSC/ NAMES(48)ý
COMMON/OUTPTS/ NS,INDEXS(43) ,NSPD,INDXSP(5o)
EQUIVALENCE (C( 1),TIME ),(C( 26),TPRNT ),(C( .-7),TFPrSP

(C( 40) ,DTP'RNT) ,(IC( 206) ,N01 ) ,(C( 114) ,TPRNTO),
(C ( 116) , DTPLT ) , (I C(14220) , N02. ) , (C( 115) ,TFLTO),
(C( 711),TPLTSP),(C( 712) ,TPLT)

C WRITE PRINT DATA TO LOGICAL UNIT 61 (SCRATCH FILE)
IF(NS.NE.o) THEN

IF((TIME.GE.TPRNT).AND. (TIME.LE.TP'RSP)) THEN
WRITE (61) (C( INDEXS( I)),I=1, NS)
NOI = NOI -+ I
TPRNT = TPRNTO + FLOAT (NO1) *DTPRNT

ENDIF
ENDIF

C WRITE PLOT DATA TO LOGICAL UNIT 62
IF(NSPD.NE.0) THEN 6

IF(UTIME.GE.TPLT).AND. (TIME.LE.TPLTSP)) THEN
DO 1 I = l.NSPD

I PC(I) =SNGL(C(INDXSP(I)))
WRITE (62-)(PC (I),I=1 ,NSPD)
N0'2 =N02, + 1
TPLT =TPLTO + FLOAT (N02) *DTPLT

ENDIF
ENDIF

C
RE TURN
END

* OUTPTM STORES THE MULTI RUN DATA IN THE APPROPRIATE OUTPUT FILES

SUBROUT INE OUTFTM
IMPLICIT REAL*e (A-H,O-Z)
REAL*4 PC(SC))
COMMON C ('2000)
CHARACTER NAMEM*12
COMtION/OUTPMC/ NAMEM (48)
COMMON.'OUTPM/ NM, INDEXM(48) ,NMPD, INDXMFP(50))

C WRITE PRINT DATA TO LOGICAL UNIT 64 (SCRATCH FILE)
IF(NM.NE.C0) THEN

ENDIF
C WRITE MULTI RUN PLOT DATA TO LOGICAL UNIT 65

IF(NMP*D..NE.0) THEN
DO 1 I = 1.NMPD

I PC(I) = SNGL(C(INDXMF-'(I)))
WRITE (65) (PC C ) ,I=1, NMPD)

ENDIF
C

RETURN-
END
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*THIS ROUTINE WRITES PRINT DATA IN COLUMN FORMAT GENERATED DURING A RUN*

SUBROUTINE POSTI
IMPLICIT REAL*8 (A-H,0-Z)
COMMON C (-200o)
CHAP'ACTER NAMES*12
COMMON/OUTF'SC/ NAMES (48)
COMMON/OUTPTS/ NS,INDEXS(48) ,NSPD,INDXSP(5t))
DIMENSION X(48)
M=(-.

I CONTINUE
IF((NS.GT.S*M).AND.(NS.NE.o)) THEN

M l+ I
I =5*(M-1)i-1

JI =5*M

3 J 1
IF(J!.GT.NS) J=NS
REWIND '61)

2 CONTINUE
WR ITE (63, 10Q) (NAMES 0(h) ,P*.= I, J)

C IF(Jl.GT.NS) THEN
C WRITE(6-'7.)
C WRITE(673,*)
C ENDIF

DO 3 LINES = 1.501
READ(61,END5) (X(fK') K1, NS)
WR ITE (6-1,20) (X (K),K= I J)

CONTINUE
C do 4 1111 = lines,67-
C write(6-,,*)
C 4 CONTINUE

GO TO 2
5 continue

C do 6 1111 = ines,6-
C write(6Z-,*)

6 CONTINUE
cao to I

ENDIF
CLOSE (UNIT=6I)
CLOSE (UNIT=62)
RETURN

10 FORMAT(5(2X,A12.2-X) II)
20 FORMAT(5VIX,G14.8))

END
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*THIS R:OUTINE WRITES PRINT DA~TA IN COLUMN FOR~MAT COLLECTED AFTER EACH
* 0PA MULT--rUN SET*

SUBROUTINE P05T'2
IMPLICIT REAL*8 (A-H,O-Z)
COMMON C (00
CHARACTER NAMEM*N12
COtIMON/OUTF*MC/ NAMEM (48)
COMMON/OUTPM/ NM, INDEXM(48) ,NMPD,INDXMP(50))
DIMENSION X(48)
M=o

I CONT INUE
IF((NM.GT.5*M).AND.CNMý.NE.0')) THEN

r= M + I
I 5*(M-1)+1

IF(Jl.GT.NM) J=NM
REWIND (64)

2 CONTINUE
WRITE (66,10) (NAMEM CL) ,L=I,J)

IF(J1.GT.NS) THEN
WRITE C6:,*)
WRITE(6-,*)

ENDIF
DO : LINES = 1,60--

.READ (64, END=5) (X(0::) , t:= I,NM)
WR ITE (66,20) (X (K:) .KI , J)

CONTINUE
dn 4 1111 = lines,67

4 CCNTINUE
GO TO 21

do 6 1111 = lines.67-

6 CONTINUE
go to 1

E N DTF
RETUIRN

IU FORMATC1H1/8C2ýX.A12l,2X)//)
20FORMATC(B1X,G14.8))

END
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C
SUBROUTINE INPUT (DATA)
IMPLICIT REAL*8 (A-HO-Z)
COMMON C (2C(300)(.
INTEGER IC (4000)'-(
LOGICAL LC(40(0) :),DATA,LVAL
DIMENSION VNAMES (50)),VNAMEM (50)
EQUTVALENCE (C(1),IC(1))
EVLJIVALENCE (C(l),LC(l))
Erul'VALENCE (C( 2-6) ,TrRNT) ,(C( 114) ,TFRNTO)
EQUIVA~LENCE (IC(206),NO1 ),(IC(1420)),N02
EQUJIVALENCE (C( 712) ,TPLT ),(C( 115) ,TPLTO
character pltfile(5C))*8,prntfil (5())*B
CHARACTER NAMES*12-.NIAMEM*12ý,varnam*12,)Nf~t1S2*8
CHARCTER VNPAME*14 ,VTYPE*1 ,CARDw.80,VNAMES*83,VNAMEM*8
COMMON/OUTPSC/ NAMES (48)
COMMON/OUTPTS/ NS, INDEXS(48) ,NSPD, INDXSP(5o)
COMMON/OUTPMC/ NP3MEM (48)
COMMON/OUTPM/ NM,INDEXM(46) ,NMFD,INDXMP(5(:')
COMMON/FREO/ N1
DAT*A NFIRST / 1I
DATA NRUNS/o/

dat 'rti /'p7,'r-n8'',prnt9,'.'r-n1','prrnt11',prnt12','prnti:L',
* 'rnt74,'prrntg','prnt9&,'prrntl1,'prntll','prnt19','prntl7 ,
* prnt2l','prnt2-2','prrnt2-ýý,'prrit2-4','prnt25'.'prnt2-6','corrit27 ',
* prnrt28','prnt2-9','prnt--.0','prnt31'.'prnt~l2-','prrit7.','prrntýý4'.
S pr-nt-ý5','prnt--.6','prnt'7','prnt-'S,'prnt:-9','prnt4U-),'prnt4l1,
* rnrrt44, 'prnt4"-, 'prnt44'. 'prnt45', 'prnt46', 'prnt47'. ornt48',
* prrnt49', 'prrit50)',

*'t pltfilet8''pltl,'plt2',plZ',t1',plt412pt','plt6',

- pltl4 , pltl5', pltl6' , pltl7', pltl', pltl9', 'plt2O',
- plt2l,',plt22ý,'plt.7','plt244','plt25','plt2ýý6','plt27',
S plt28','plt29','plt30'',plt 1,'plt32!ý,'plt3','plt74',
* 'ltý5','plt--16','plt37','plt.','plt:9',Cplt40','Vplt4lV.
* plt42','plt43','plt44','plt45','pit46',plt47','plt48.,
* plt49','plt5O'/

i-f nfirst .eq. I) THEN
NS 0
NM = )

N-1PD = o)
NMPD = 0

ENDIF
TPRNT = TPRNTO
TPLT = TPLTO
NOt = (1

N 02' 0
Ni = 0
NF:LNS =NRUNS + 1
DATA = FALSE.
lr'FN(60,FTLE=inPu~t.DAT',FTATUIS='OI 0''
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C
C CARD TYPE COLUMNS 1-2
C 1-INPUT DATA CARD
C 2-PRINT DATA CARD*
C 3-PLOT DATA CARD*
C 4-INPUT DATA CARD FOR LOGICAL VARIABLES
C 5-DUMP CARD
C 9-TERMINATOR CARD
C 10:-COMMENT CARD

* DECODE AN INPUT DATA CARD
*DATA IDENTIFIER IN COLUMNS 4-15
*COMMUNICATION ARRAY INDEX COLUMNS 16-20--
* ~FORMAT TYPE IN COLUMN2:
*FLOATING POINT DATA 26-40
*LOSICAL AND INTEGER DOTA 26-40
* ECHO DATA FLAG (0-ECHO. 1-NO ECHO) 42

1 2:7.4 r-ead(60,*,e~nd=999) itype
backspace 60)
i -f(i type .gt. tO . o. i type .l1t. 1) go to 54--
got 0(1 4Or)o.0, 500, 54:.', 54-,,54Z, 547 ,547, 900o, 100K)) i

100 READ(60, 111) ITYP'E,VNAME, INDX,VTYPE
111 FORMAT(I2 ,Al4,I4,2X ,AI)

if(vtype .eq. 'F' .or. vtype.eq. 'f') go to 101
i f(vtype . eq. 'I ' . or. vty/pe. eq. 'i ') go t o 200
if(vtvpe .eq. 'L' ~or-. vtype.ep.'1') go0 t o 77
print*, 'Lnr-ecogni:.able -format type'
mo to 12-4

10C)1 backsp,:c~e 6,0
READ(6:'.t()) ITYPE,VNAME, INDX,VTYPE.YALUE, IEDF
IF(IEDF *NE. 1) THEN

PRINT*,ITYPE,' ',VNAME,' ',INDX,' ',VTYF'E, ' *,VALUE
END IF
C(INDX) = VALUE

1o FORMAT(I2':,A14, 14,ýX ,A1 ,E17.8, lX, i)
go to 127:4

200 backspace 60
F:EAD(6C0,20) ITYPE,VNAME, INDX ,VTYFPE.IVALUE, IEDF
IC(INDX) -IVALUE
IF(IEDF .NE. 1) THEN
F'RINT*,ITYPE.' ',VNAME,' ',INDX,' ',VTYFE,' ',IC(INDX)

ENDIF
20. FORMAT'12-,A14,14,2-X,A1 ,l10X,17,1X,I1)

GO TO 1.2:74
Z00 backspace 60)

READ (60-,-:O() ITYPE,VNAME, INDX ,VTYP-E,LVAL, IEDF
LC(INDX) LVAL
IF(IEDF .NE. 1) THEN

PRINT*.ITYPE,' ',VNAME,' ',INDX,' ',VTYPE,' ',LC(INDX)
ENDIF

:o FORMAT C 12,A14, 14,ýX ,A1 ,2X ,L7,9X,11)
GO TO 12:74
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C•*********-4******• *••****•****.*,*******************•4**•********•**** •**,**** •

C DECODE A PRINT DATA CARD *

C PRINT HEADER IN COLUMNS 4-15 *

C COMMUNICATIONS ARRAY INDEX IN COLUMNS 16-20 *

C PRINT DATA COLLECTION FLAG IN COLUMN 23 *

C MAXIMUM OF 48 PRINT DATA CARDS *
C *********** **•***************•*.**************•** •************* **•** *** •**

400 ;c-.-AD(60,4Z..) ITYF, arn•.., I ,UFFL3
oackspace 60
if(mpflg eq. 1) go to 401
NS = NS * 1
IF(NS GT. 48) THEN

PRINT*.'TOO MANY PRINT VARIABLES
go to 1234

endif
READ(6:'0,40) ITYPE.NAMES(NS) ,INDEXS(NS),MPFLG

40 FORMAT(I2, IX,A12, IX, 14,2X,I1)
PRINT*,ITYPE, ',NAMES(NS),' ',INDEXS(NS),' ',MF'FLG
GO TO 12:4

401 NM = NM + 1
IF(NM .GT. 48) THEN

PRINT*,'TOO MANY PRINT VARIABLES
go to 1234

ENDIF
READ(60,40) ITYPE,NAMEM(NM) ,INDEXM(NM) ,MPFLG
PRINT*,ITYPE,' ',NAMEM(NM),' ',INDEXM(NM),' ,MPFLG
GO TO 1234

C**•-****-*** **-*-****-***..x***.***.**..*****-*****.., ** **** ********** ,.****.•J *- .

C DECODE PLOT DATA CARDS *

C PLOT LABEL 4-15 *

C C ARRAY INDEX COLUMNS 16-20 *

C PLOT DATA COLLECTION FLAG 23 *

C THE PLOT DATA COLLECTION FLAG INDICATES WHETHER PLOT DATA 1S *

C TO BE COLLECTED THROUGHOUT EXECUTION OF A SIMULATION RUN OR
C IS TO BE COLLECTED ONLY' AFTER EXECUTION HAS BEEN COMPLETED *

C MAXIMUM OF 50 PLOT DATA CARDS *
C ***************************************** ****************************** **

500 READ (60,60) ITYPE,VNAMS2, IINDXSP,MPFLG
backspace 60
if(mpflq .eq. 1) go to 501
NSPD = NSPD +. I
IF(NSPD .GT. 50) THEN

PRINTv, 'TOO MANY PLOT VARIABLES
go to 1234

ENDIF
READ(60,60) ITYPE,VNAMES(NSPD) ,INDXSP (NSPD) ,MF'FLG

60) FORMAT(I2,AS,6X, 14,2X,II)
PRINT*,ITYFPE, ' ',VNAMES(NSPD),' ',INDXSP(NSPD),' ',MFPFLG
GO TO 1234

501 NMPD = NMPD + 1
IF(NMPD .GT. 50) THEN

PRINT*, 'TOO MANY PLOT VARIABLES
go to 1234

ENDIF
READ (60,60) ITYPEVNAMEM(NMPD) , INDXMP (NMPD) .MPFLG
PRINT*,ITYPE,' ',VNAMEM(NMPD),' ',INDXMP(NMPD),' ',MPFLG
GO TO 1234

543 read (60,90) rard
print*,'card type not found'
print*,card
print*, "
go to 1234

1000 read (60, 90) card

print*,card
go to 1234

A-12



C TERMINAiTOR CARD MUST FOLLOW DATA DECt. FOR EACH RUN*
C RUN TITLE IS CONTAINED IN COLUMNS 4-2-Z

9c0 READ(.So,9o) CARD
FR I NT- , CARD

9o FORMAT (A)
IF(N9 .NE. C)) THEN

OP*EN (61 ,FORM= 'UNFORMATTED' ,STATUS= 'SCR-,ATCH')
OPEN(67,FILE~prntfi1 (NRUNS) ,STATUS='UNk.NOWN')
END IF
IFU(NM .NE. (1) .AND. (NFIRST .EQ. 1)) THEN
OF'EN (61.FORM= 'UNFORMATTED' ,STATUS= 'SCRATCH')
OPEN (66,FILE='P'RINTM. DAT' ,STATUS='UNI<:NOWN')
ENDIF
IF(NEF-D .NE. C)) THEN
OF'EN(62,FILE=pltfile(nrLtns) ,FORM='UNFORMATTED')
WRITE(62) NSF'D.NSF'D
WRITE(62) (VNAMES(III) ,III=1,NSF'D)
ENDIF
IF(UNFIRST .EO. 1) .AND. (NMPD .NE. C-))) THEN
OFPEN (65,FILE= 'PL.TM. DAT' ,FORM='UNFORMATTED')
WRITE (65) NMP'D,N11F'D
WRITE(65) (VNAMEM(III),III=1,NMPD)
ENDIF
NFIRFST C.
DATAI = .TRUE.

999 CONTINUE
RE FURN
END
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NONLINEAR M4ODEL

SUBRCUTINE ACTUAT
IMPLICIT REAL*6 (A-H,O-Z)
COM.MON C C20X)0)
DIMENSIONDE()DED) EF()X().CC() RTF)

* ACCELIM1 (2),ACCELIMZ '(2ý),HM(ý) ,DEFDD(2-)

* ~(C( 42) ,DEFD CI)) ,(CC 407) ,DEFD(ZýN
(C 1C 404) ,DEFDD(I) ) ,(C '40"Z) .DE=:DD(Z) ),a

* ~~(CC 408)6,XZ(1) ) (CC 407) ,X_(Z) ), (C( 1)JIME)
DATA~ RATELM / .2-5DO
DA-"^ OMEGA /144.0 DO
DATA '-ETA / *DC:)/
Z- T- '3) DO

347A~ .HM /0. DO

:)E=(C () 700

O** NLY TWO ACTUATORS ARE SIMULATED *

DO Z:-- 1 = 1 .7
z -SET DEFO TO X2 FCR !NTESRATICN*

DEFD:)(1) = Z(1
c *CALCULATE DEADBIAND IN RATE FEEDBACrK:*

IF ED()T..D RA7E=B(I) = CEDI-.D)0D
IF (DEF0(l).LT.-1.6D0) RA1TEFBUI) = (DEFD(I)'-l.6D0))/2(:.D(ol

*ACTUATOR DYNAMICS EQUATION*
ACCRO (I, (CMEGA**2ý. DO) *(DE=C (I) -DEF (I)

* -(2.Do*ZE7A*DEFD (I) /OMEGA) -rTE=B (I))
*CALCULqtE4r SPEED-TORQUE LIMITS*

ACCELIMI:CI = 31*(1.DQ_-DEFD(I)/RATE;L21)
IF (ACCZ-LIM1(I).GT.G2) ACCEL:Ml(l) = G_'
ACCEILIM2(I) =-Gl*(1.Do+DEFD(I)/RATELM)
IF (CE12ILT-G72) ACCELIM2f7) =-G

I-F (ACCRDCI: .3T.AC=-LIMl!.I) ) PACCRD (I) = ACCE'TM1C(I)
IF (At-CC;rCC:).LT.ACCE-LIM2.(I)) ACCPQ(l) = gACCELIM'_(I)

C *CALZUL1 ATT HINGE MOMENTS*
;-M(:) = DEF(I,*K-:HI

C*CHECi-: =OR POSITION !-!MIT*

IF (DFI.E..60.ND. DEFDDCI).GT.0.Do) THEN
:)E7OD(I) ).rxcj

D.EFD(I) =0.006D

END 1F
1;= (DEF(I).LE.-0.47600: AvND. DEFDD(I).LT.0.D.r0) THEN

DEFOOCIl) =0.00

-LE=Z(I) =0.DC)

: IE . 1) 47 0

DEFD(Z) =X2(ýI)

DEFDD(I) A CCRO(i)-HM(I)
2,) CONTITNUE

P ET URN
END

C *~THIS SUBROUTINE INITIALIZES THE ACTUATOR STATES *

A* ND SETS THE INDEXES FOR THE INTEGRATION SCHEME *

_-':EPCUTINE ACTIT.1

ADDC ::I I ADOP (CC
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